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Computation of the flow between two rotating coaxial disks 
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A numerical investigation of the problem of rotating diska is made using the Newton- 
Raphson method. It is shown that the governing equations may exhibit one, three 
or five solutions. A physical interpretation of the calculated profiles will be presented. 
The results computed reveal that both Batchelor and Stewartson analysis yields for 
high Reynolds numbers results which are in agreement with our observations, i.e. the 
fluid may rotate as a rigid body or the main body of the fluid may be almost at  rest, 
respectively. Occurrence of a two-cell situation at  particular branches will be discussed. 

1. Introduction 
The study of the steady flow of an incompressible viscous fluid between two infinite 

rotating disks is of considerable importance since it offers the possibility of calculating 
an exact solution to the Navier-Stokes equations. In  1921 von K k m h  showed that 
the Navier-Stokes equations describing the flow for a single infinite rotating disk can 
be reduced by making use of the similarity equations to a set of nonlinear ordinary 
differential equations. Using this approach he was able to calculate a solution for the 
flow in the vicinity of an infinite rotating disk. Later Batchelor (1951) and Stewartson 
(1953) pointed out that the same transformations can be applied to the problem of 
steady flow between two infinite rotating disks. For infinite Reynolds number they 
found unique limiting flows which are, however, qualitatively different. Batchelor 
pointed out that for high Reynolds numbers the flow between the two disks is charac- 
terized by the fact that the main body of the fluid rotates with constant angular 
velocity and that boundary layers develop on both disks. On the other hand, 
Stewartson predicted profiles for which the velocity outside the boundary layers has 
only an axial component. Mellor, Chapple & Stokes (1968) and Roberts & Shipman 
(1976) produced several classes of solutions which are referred to as the multiple-cell 
solutions. According to Mellor et al. a cell is defined as a region bounded by planes 
parallel to the disks on which the axial velocity vanishes. Mellor et al. discovered two 
one-cell branches, one two-cell branch and one three-cell branch of solutions while 
recently Roberts & Shipman claimed to have produced solutions with as many as 
five cells. Nguyen, Ribault & Florent (1975), using the Newton-Raphson method, 
calculated two solutions for large values of the Reynolds number. Unfortunately, so 
far the connexions between multiple solutions on the one hand and multiple-cell 
solutions on the other are not evident. 

The goals of this paper are (i) to propose a reliable method which makes it possible to 
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calculate the problem for any arbitrary value of the Reynolds number, (ii) to make 
an attempt to evaluate the number of possible solutions of the governing equations 
and (iii) to find a relation between multiplicity of solutions and multiple-cell regions. 

2. Governing equations 
Consider the physical situation of two rotating disks. Cylindrical polar co-ordinates 

(r,  8, z )  are used and the lower disk, in the plane z = 0, has an angular velocity Q while 
the upper disk, at x = d, has an angular velocity sQ. For steady incompressible flow 
of a viscous fluid the governing equations are the Navier-Stokes equations, which 
constitute a set of nonlinear partial differential equations. In  this paper the trans- 
formations 

are used to reduce the Navier-Stokes equations to a set of ordinary nonlinear 
differential equations. Here the velocity components of the fluid are (u,v ,w)  in the 
directions of increasing (r,  8, z )  respectively, v is the kinematic viscosity of the fluid 
and [ is a new dimensionless axial co-ordinate: f ;  = z/d. 

On using these substitutions, the Navier-Stokes equations result in a set of ordinary 
nonlinear differential equations: 

u = rQP([),  v = rQG([) ,  w = (vQ)*H([)  (2.1) 

P" = R*HF' + R(F2 - G2 + k) ,  (2.2) 

G" = 2RPG -I- R*G'H, (2.3) 

H' = -2R*F, (2-4) 

where R = Qd2/v is the Reynolds number and k is an unknown constant which arises 
from the pressure equation. From the no-slip condition at both disks, the boundary 
conditions are 

P(O) = H(O) = 0, G(0)  = 1, (2 .5)  

P( 1) = H (  1) = 0, G( 1) = S. (2.6) 

The problem is now to calculate the fuwtions E"(c), G ( [ )  and H ( [ )  for various values 
of R and 9 in the ranges 0 < R < 03 and - 1 < s < 1. Notice that six boundary con- 
ditions have been formulated for a fifth-order system since the constant k is unknown. 

I 

3. Numerical solution of governing equations 
The above problem, for higher values of the Reynolds number, is considered in the 

literature as a particularly difficult numerical problem. So far a number of numerical 
techniques have been proposed to solve it: Lance & Rogers (1962) and Osborne (1969) 
used the shooting method, Well (1972) adopted the quasi-linearization procedure of 
Bellman & Kalaba (1966), Greenspan (1972) made use of the relaxation procedure 
while Pearson (1966) took advantage of the false tiansient method. Recently, Nguyen 
et al. (1976) have applied the Newton-Raphson approach, Kubicek, Holodniok & 
HlavhEek (1976, 1977) differentiation with respect to an actual parameter and one- 
parameter imbedding, respectively, and Roberta & Shipman (1976) a continuation 
method for sensitive problems. 
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To solve this two-point boundary-value problem by means of the shooting method 
we need to know F’(O), G’(0) and k. Furthermore, to get a solution to our problem, we 
have to use certain definite values of these missing conditions in order that 

F(1) = H ( 1 )  = 0 and G(1)  = s. 

Lance & Rogers have shown that the classical shooting method may be used for 
Reynolds numbers as high as approximately 700-800. For higher values, unfortun- 
ately, this procedure fails. This observation is in agreement with our experience. 
Recently Roberts & Shipman have managed to combine the shooting method with 
continuation. This method is capable of integrating sensitive two-point boundary- 
value problems. Indeed, for the case of rotating disks they were able to calculate the 
solution up to  R - 5000. 

The quasi-linearization method, which uses the superposition principle, suffers from 
t,he same shortcoming as the classical shooting method. Moreover, the relaxation 
technique is also unable to calculate easily all solutions for higher values of the Reynolds 
number (Nguyen et uZ.). The most promising approaches are those where the governing 
equations are solved simultaneously, e.g. the false transient method (solved by an 
implicit finite-difference scheme) and the Newton-Raphson method. Both approaches 
have made it possible to calculate the solution for higher values of the Reynolds 
number : Pearson (1965) reported a solution for R = 1000 whilst Nguyen et al. presented 
results for R = 7000. 

In this paper we employ the Newton-Raphson method for solution of nonlinear 
finite-difference equations in a form which can handle the problem of rotating disks in 
a very convenient way. After the first and second derivatives in (2 .2) - (2 .4)  have been 
replaced by the finite-difference formulae 

F” M (Fi-l - 2Fi + $+l)/h2, F’ N (Fi+I - Fi-I)/2h, (3 .1 )  

a set of nonlinear fbite-difference equations results: 

(3 .4 )  

Here we have used a uniform mesh with n + 1 mesh points. To solve this huge set of 
nonlinear finite-difference equations the Newton-Raphson method has been used. 
After linearization of (3 .2) - (3 .4)  the set of linear algebraic equations for the new, 
( j  + 1)th approximation of the variables 

bT = .** ,Hn,Fn,Gn,k)  (3 .5 )  

may be written in the matrix form 
Abi+i = d. (3 .6 )  

Here A is the Jacobian matrix of the set (3 .2) - (3 .4)  and d is the vector of the right- 
hand sides. Bot’h A and d are evaluated using bi. If the governing equations are solved 
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in the order (3.4) for i = 1, (3.2) for i = 2, (3.3) for i = 2, (3.4) for i = 2, (3.2) for i = 3, 
. . ., (3.4) for i = n, then, with respect to the vector of variables (3.5), a seven-diagonal 
band matrix with a non-zero last column results. From (2.5) and (2.6), H, = 0, 
F, = 0, G, = 1 and H,,, = 0,  Gnfl = s. 

Of course, since the matrix A is sparse efficient elimination algorithms may be used 
to solve (3.5) (KubiEek 1973). I n  addition only the diagonal elements (7 diagonals) as 
well as the last column are stored, so that problems with a high dimension may be 
solved, i.e. a large number of grid points can be used. The grouping 

bT = (H2, H3, .. - 9  H,, J!2, J!s, - - ., Fn, G,, Gs, *.  7 ,  G,, k), (3.7) 
which was used by Nguyen et al., gives rise to a matrix which does not exhibit the band 
structure and, as a result, the calculation process is very cumbersome. The algorithm 
proposed here made it possible to adopt 100 mesh points (h = 0.01) for the calculations 
reported. To be sure that this accuracy is sufficient we have recalculated the problem 
for R = 625 with h = 0.005 and h = 0.0025, i.e. with 200 and 400 mesh points. All 
calculations were performed in a double-precision arithmetic, which corresponds to 
15 significant digits on the computer Tesla 200. The proposed procedure allowed us to 
calculate the profiles for very high Reynolds numbers R N lo5. 

4. Discussion of numerical results 
The results reported here have been obtained for the case of disks roteting in the 

same sense (s = 0-8). Using the Newton-Raphson technique we have performed 
a systematic search for R = 625 and have found five solutions of the governing equa- 
tions (2.2)-(2.6). The dependence of k on R has been calculated by continuation of 
these solutions. For continuation the Newton-Raphson method has again been used; 
the solution calculated for R has been used as a first guess for R + AR. In the vicinity 
of the branch points of the function k(R)  the Newton-Raphson method may fail. 
However, here a method employing direct evaluation of the branch points can be used 
(KubiEek & HlavAEek 1975). 

The results of our analysis are displayed in figures 1-5; a complete set of tables of the 
numerical results is available from the authors. 

The dependence of the constant k on the Reynolds number is drawn in figure 1, 
which reveals that a number of branches exist. From this figure it may be inferred 
that for R < 205 only one solution of the governing equations exists. In  the region 
205 < R < 330 three solutions to the Navier-Stokes equations have been calculated 
while for R > 330 five solutions are possible. Let us first consider the branch I (see 
figure 1) in the region of uniqueness. The profiles of the variables F ,  G and H for 
R = 100 are drawn in figure 2. We can see that the fluid flows from the disk with lower 
velocity towards the disk with higher velocity, i.e. there is an inflow at  the lower disk 
and an outflow at the upper disk. Beyond a certain axial distance the angular velocity 
does not change significantly and the fluid rotates with the velocity G z 0.9. In  
figure 3(a) the profiles of P, G and H are drawn for R = 275. For this value of the 
Reynolds number multiple solutions may exist. As figure 3 (a) reveals, the profiles of 
F, G and H on branch I arevery similar to those for R = 100 - however the boundary- 
layer character of the flow is more obvious. It is evident that there is a boundary 
layer on each disk with fluid moving inwards on the faster disk and outwards over the 
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slower disk. The shape of the function G reveals that a substantial part of the fluid is 
moving en bloc in a zone lying between the boundary layers developing near the disks. 
Flow of this type was discovered in 1951 by Batchelor and hence in this paper branch I 
will be referred to as the Butchelor branch, 

However, for R = 275 two other solutions of the governing equations exist and are 
shown in figures 3 (b )  and ( c ) .  We can see from these figures that both solutions differ 
from that shown in figure 3 (a) in all essentials. There is suction on both disks: using 
the terminology of Mellor et al., a two-cell solution appears. Comparing the profiles 
displayed in figures 3 ( b )  and ( c )  indicates that those on branch I1 are more asym- 
metrical. It is worth noting that on branch I1 the angular velocity does change 
‘smoothly’, and part of the fluid lying in the central zone rotates in the opposite 
direction. 

For R = 625 five solutions of (2.2)-(2.6) are possible. The profiles calculated for 
each particular branch are shown in figures 4(u-e). In  figure 4(a) we may see the 
Batchelor solution of the Navier-Stokes equations. A substantial part of the fluid 
rotates as a rigid body. Comparing figures 3 ( b )  and 4 ( b )  shows that with increasing R 
all details on branch I1 remain the same. A similar statement is essentially also true 
for figures 3 ( c )  and 4 ( d ) .  Figure 4 ( d )  reveals that the main body of the fluid has no 
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FIGURE 2. Solution for R = 100: region of uniqueness. Branch I. 

angular velocity. Apparently this is the Stewartson branch. There are, however, two 
additional branches: I11 and V. On comparing the profiles on branches I1 and 111, 
it appears that they are mirror-symmetrical. The physical interpretation of the profiles 
displayed in figure 4 ( e )  is not obvious. 

Figures 5 (a)-(e) show the prol"lles for R = 10000. From these figures we may infer 
that two boundary-layer solutions can exist: the Batchelor branch gives rise to a solu- 
tion where the fluid rotates as a rigid body and the Stewartson branch to one for which 
the main body of the fluid does not rotate. In  the former case there is suction a t  the 
faster disk and blowing at the slower disk while in the latter case there is suction on 
both disks. 

5. Conclusions 
From the material presented in this paper it is apparent that more than one solution 

to the Navier-Stokes equations can exist for the problem of rotating disks. For higher 
values of the Reynolds number we have found five sohtions here. The multiple 
steady states 8.18 the reason why t,he results in the literature are contradictory. 
Of course, there is the problem of the stability of particular solutions, which must 
be solved in the future. A detailed study of the problem for different values of the 
parameter s is in progress. 
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( b )  Branch 11. (c) Branch IV. 
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